Environment International (Oct 2023)

Macroplastic fragmentation in rivers

  • Maciej Liro,
  • Anna Zielonka,
  • Tim H.M. van Emmerik

Journal volume & issue
Vol. 180
p. 108186

Abstract

Read online

The process of macroplastic (>0.5 cm) fragmentation results in the production of smaller plastic particles, which threaten biota and human health and are difficult to remove from the environment. The global coverage and long retention times of macroplastic waste in fluvial systems (ranging from years to centuries) create long-lasting and widespread potential for its fragmentation and the production of secondary micro- and nanoplastics. However, the pathways and rates of this process are mostly unknown and existing experimental data not fully informative, which constitutes a fundamental knowledge gap in our understanding of macroplastic fate in rivers and the transfer of produced microparticles throughout the environment. Here we present a conceptual framework which identifies two types of riverine macroplastic fragmentation controls: intrinsic (resulting from plastic item properties) and extrinsic (resulting from river characteristics and climate). First, based on the existing literature, we identify the intrinsic properties of macroplastic items that make them particularly prone to fragmentation (e.g., film shape, low polymer resistance, previous weathering). Second, we formulate a conceptual model showing how extrinsic controls can modulate the intensity of macroplastic fragmentation in perennial and intermittent rivers. Using this model, we hypothesize that the inundated parts of perennial river channels—as specific zones exposed to the constant transfer of water and sediments—provide particular conditions that accelerate the physical fragmentation of macroplastics resulting from their mechanical interactions with water, sediments, and riverbeds. The unvegetated areas in the non-inundated parts of perennial river channels provide conditions for biochemical fragmentation via photo-oxidation. In intermittent rivers, the whole channel zone is hypothesized to favor both the physical and biochemical fragmentation of macroplastics, with the dominance of the mechanical type during the periods with water flow. Our conceptualization aims to support future experimental and modelling works quantifying plastic footprint of different macroplastic waste in different types of rivers.

Keywords