Pulsations and flows in tissues as two collective dynamics with simple cellular rules
Raghavan Thiagarajan,
Alka Bhat,
Guillaume Salbreux,
Mandar M. Inamdar,
Daniel Riveline
Affiliations
Raghavan Thiagarajan
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
Alka Bhat
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
Guillaume Salbreux
The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
Mandar M. Inamdar
Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Corresponding author
Daniel Riveline
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Corresponding author
Summary: Collective motions of epithelial cells are essential for morphogenesis. Tissues elongate, contract, flow, and oscillate, thus sculpting embryos. These tissue level dynamics are known, but the physical mechanisms at the cellular level are unclear. Here, we demonstrate that a single epithelial monolayer of MDCK cells can exhibit two types of local tissue kinematics, pulsations and long range coherent flows, characterized by using quantitative live imaging. We report that these motions can be controlled with internal and external cues such as specific inhibitors and substrate friction modulation. We demonstrate the associated mechanisms with a unified vertex model. When cell velocity alignment and random diffusion of cell polarization are comparable, a pulsatile flow emerges whereas tissue undergoes long-range flows when velocity alignment dominates which is consistent with cytoskeletal dynamics measurements. We propose that environmental friction, acto-myosin distributions, and cell polarization kinetics are important in regulating dynamics of tissue morphogenesis.