Soils and Foundations (Dec 2022)

Coupled solute transport through a polymer-enhanced bentonite

  • Shan Tong,
  • Kristin M. Sample-Lord

Journal volume & issue
Vol. 62, no. 6
p. 101235

Abstract

Read online

Polymer-enhanced bentonites for geoenvironmental containment barriers, such as bentonite-polyacrylic-acid composite (BPC), generally have low hydraulic conductivity (e.g., k < 10−10 m/s) even when exposed to aggressive waste solutions. However, understanding of diffusion and membrane behavior properties of enhanced bentonites and associated impacts on coupled contaminant transport through the barrier remains limited. In this study, hydraulic conductivity (k), effective diffusion coefficients (D*), and membrane efficiencies (ω) were measured for BPC with 3.2 % polymer content (by mass; referred to as BPC-3.2). Tests were performed with potassium chloride (KCl) solutions ranging from dilute (2.5 mM) to aggressive (400 mM) concentrations. As concentration increased, D* increased by a factor of three, ω decreased by two orders of magnitude, and k remained relatively low (1.2 × 10−11 to 2.9 × 10−11 m/s). The experimental results were paired with an existing coupled solute transport model to evaluate the significance of membrane behavior and diffusion on predicted total solute flux through a geosynthetic clay liner (GCL) and a GCL overlying an attenuation layer. The predicted mass flux was diffusion dominated, with the diffusive flux greater than the advective flux by one to two orders of magnitude. Membrane behavior reduced predicted total solute flux through the GCL by 5.8 to 61 %. The results demonstrate the role of coupled solute transport in the long-term performance of bentonite barriers, and advance understanding of contaminant transport in BPC.

Keywords