Agronomy (Apr 2025)

Deep Fertilization Is More Beneficial than Enhanced Efficiency Fertilizer on Crop Productivity and Environmental Cost: Evidence from a Global Meta-Analysis

  • Qi Wu,
  • Hua Huang,
  • Qinhe Wang,
  • Zeyu Liu,
  • Runzhuo Pei,
  • Guosheng Wen,
  • Jinghui Feng,
  • Hao Wang,
  • Peng Zhang,
  • Zhiqiang Gao,
  • Chuangyun Wang,
  • Peng Wu

DOI
https://doi.org/10.3390/agronomy15051103
Journal volume & issue
Vol. 15, no. 5
p. 1103

Abstract

Read online

It is unclear whether enhanced efficiency fertilizer (EEF) or deep fertilization strategies (DF) can simultaneously improve crop productivity and reduce gaseous nitrogen losses. The DF strategy’s investment cost is lower than that of EEF’s, with more potential for large-scale promotion. However, there is still a need for a comprehensive comparison and evaluation of DF and EEF’s effects on crop productivity and gaseous nitrogen losses. Here, we examine the effects of DF and EEF on crop yield, nitrogen use efficiency (NUE), and nitrous oxide (N2O) and ammonia (NH3) emissions by a meta-analysis of published studies. We collected peer-reviewed articles on EEF and DF published in recent decades and conducted a global meta-analysis, and explored their responses to different climatic, field management practices, and environmental factors. The results showed that compared with urea application on the surface, EEF and DF significantly increased yields by 7.52% and 13.88% and NUE by 25.84% and 36.27% and reduced N2O emissions by 37.98% and 34.18% and NH3 emissions by 42.37% and 69.68%, respectively. The DF strategy is superior to that of the EEF. Due to differences in climatic factors, soil properties, and management practices, the effects of DF and EEF in improving crop productivity and gaseous nitrogen loss vary. However, in most cases, DF is more beneficial than EEF. Compared with EEF, DF significantly increased the yield by 84.63% and reduced NH3 volatilization by 64.47%, yield-scaled N2O emission by 13.32%, and yield-scaled NH3 emission by 60.23%. Therefore, we emphasize that DF can achieve higher yields, nitrogen fertilizer utilization efficiency, lower emissions of gaseous nitrogen, and lower yield-scaled N2O and NH3 emissions than EEF, which is beneficial for the sustainable development of global agricultural ecosystems. The research results provide valuable information on crop productivity and environmental costs under an effective fertilizer type and fertilization strategy management.

Keywords