Scientific Reports (Feb 2021)

Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19

  • Poovarasan Neelakandan,
  • Chiu-Chung Young,
  • Asif Hameed,
  • Yu-Ning Wang,
  • Kui-Nuo Chen,
  • Fo-Ting Shen

DOI
https://doi.org/10.1038/s41598-021-82442-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Tea leaves possess numerous volatile organic compounds (VOC) that contribute to tea’s characteristic aroma. Some components of tea VOC were known to exhibit antimicrobial activity; however, their impact on bacteria remains elusive. Here, we showed that the VOC of fresh aqueous tea leaf extract, recovered through hydrodistillation, promoted cell division and tryptophan-dependent indole-3-acetic acid (IAA) production in Pseudomonas sp. NEEL19, a solvent-tolerant isolate of the tea phylloplane. 1-octanol was identified as one of the responsible volatiles stimulating cell division, metabolic change, swimming motility, putative pili/nanowire formation and IAA production, through gas chromatography-mass spectrometry, microscopy and partition petri dish culture analyses. The bacterial metabolic responses including IAA production increased under 1-octanol vapor in a dose-dependent manner, whereas direct-contact in liquid culture failed to elicit such response. Thus, volatile 1-octanol emitting from tea leaves is a potential modulator of cell division, colonization and phytohormone production in NEEL19, possibly influencing the tea aroma.