mBio (Aug 2022)
Small-Molecule-Induced Activation of Cellular Respiration Inhibits Biofilm Formation and Triggers Metabolic Remodeling in Staphylococcus aureus
Abstract
ABSTRACT Staphylococcus aureus, a major pathogen of community-acquired and nosocomial-associated infections, forms biofilms consisting of extracellular matrix-embedded cell aggregates. S. aureus biofilm formation on implanted medical devices can cause local and systemic infections due to the dispersion of cells from the biofilms. Usually, conventional antibiotic treatments are not effective against biofilm-related infections, and there is no effective treatment other than removing the contaminated devices. Therefore, the development of new therapeutic agents to combat biofilm-related infections is urgently needed. We conducted high-throughput screening of S. aureus biofilm inhibitors and obtained a small compound, JBD1. JBD1 strongly inhibits biofilm formation of S. aureus, including methicillin-resistant strains. In addition, JBD1 activated the respiratory activity of S. aureus cells and increased the sensitivity to aminoglycosides. Furthermore, it was shown that the metabolic profile of S. aureus was significantly altered in the presence of JBD1 and that metabolic remodeling was induced. Surprisingly, these JBD1-induced phenotypes were blocked by adding an excess amount of the electron carrier menaquinone to suppress respiratory activation. These results indicate that JBD1 induces biofilm inhibition and metabolic remodeling through respiratory activation. This study demonstrates that compounds that enhance the respiratory activity of S. aureus may be potential leads in the development of therapeutic agents for chronic S. aureus-biofilm-related infections. IMPORTANCE Chronic infections caused by Staphylococcus aureus are characterized by biofilm formation, suggesting that methods to control biofilm formation may be of therapeutic value. The small compound JBD1 showed biofilm inhibitory activity and increased sensitivity to aminoglycosides and respiratory activity of S. aureus. Additionally, transcriptomic and metabolomic analyses demonstrated that JBD1 induced metabolic remodeling. All JBD1-induced phenotypes were suppressed by the extracellular addition of an excess amount of menaquinone, indicating that JBD1-mediated respiratory stimulation inhibits biofilm formation and triggers metabolic remodeling in S. aureus. These findings suggest a strategy for developing new therapeutic agents for chronic S. aureus infections.
Keywords