Redox-modulated SNX25 as a novel regulator of GPCR-G protein signaling from endosomes
Yulong Zhang,
Zhijun Yu,
Mingwei Sun,
Ruyue Du,
Hanhan Gao,
Qiankun Dai,
Yan Dong,
Cuicui Liu,
Menghui Yin,
Tingting Xu,
Xiaofei Zhang,
Jinsong Liu,
Jinxin Xu
Affiliations
Yulong Zhang
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
Zhijun Yu
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
Mingwei Sun
Basic Research Center, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China
Ruyue Du
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
Hanhan Gao
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
Qiankun Dai
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
Yan Dong
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
Cuicui Liu
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
Menghui Yin
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
Tingting Xu
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
Xiaofei Zhang
Basic Research Center, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
Jinsong Liu
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China; Corresponding author.
Jinxin Xu
State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China; Corresponding author.
GPCR-G protein signaling from endosomes plays a crucial role in various physiological and pathological processes. However, the mechanism by which endosomal G protein signaling is terminated remains largely unknown. In this study, we aimed to investigate the regulatory mechanisms involved in terminating the signaling of Gα subunits from endosomes. Through structural analysis and cell-based assays, we have discovered that SNX25, a protein that targets endosomes via its PXA or PXC domain, interacts with regulator of G protein signaling (RGS) proteins (including RGS2, RGS4, RGS8, and RGS17) in a redox-regulated manner. The interaction between SNX25 and these RGS proteins enhances their GTPase-accelerating activity towards Gαi/q and their ability to bind GDP-bound (inactive form) Gαi/q. As a result, SNX25 recruits these RGS proteins to endosomes, leading to the termination of endosomal Gαi/q signaling. Furthermore, we have found that the SNX25/RGS complex also exerts a negative regulatory effect on Gαi/q signaling from the plasma membrane. This is achieved by recruiting Gαi/q to endosomes and preventing its activation on the plasma membrane. Our findings shed light on the previously unknown role of redox-modulated SNX25 in inhibiting Gαi/q signaling, thereby uncovering a novel mechanism for terminating Gαi/q signaling from endosomes. Importantly, this study expands our understanding of the regulation of GPCR-Gαi/q signaling beyond the plasma membrane.