Artificial Intelligence in Geosciences (Dec 2023)

Enhanced crustal and intermediate seismicity in the Hindu Kush-Pamir region revealed by attentive deep learning model

  • Satyam Pratap Singh,
  • Vipul Silwal

Journal volume & issue
Vol. 4
pp. 150 – 163

Abstract

Read online

The Hindu Kush-Pamir region (HKPR) is characterized by complex ongoing deformation, unique slab geometry, and intermediate seismic activity. The availability of extensive seismological data in recent decades has prompted the use of deep learning algorithms to extract valuable insights. In this study, we present a fully automated approach for augmenting earthquake catalogue within the HKPR. Our method leverages an attention mechanism-based deep learning architecture to simultaneously detect events, perform phase picking, and estimate magnitudes. We applied this model to a ten-month dataset (January 2013–October 2013) from 83 stations in the region. Utilizing a robust criterion to evaluate the model's probabilities, we associated phases at different stations and pinpointed earthquake locations in the region. Our results demonstrate a significant enhancement, revealing nearly four and a half times more earthquakes than previously documented in the International Seismological Center (ISC) catalogue. A notable portion of these newly detected events falls within the category of very low-magnitude earthquakes (<3), which were absent in the ISC catalogue. Notably, our spatiotemporal analysis reveals a concentration of crustal seismicity along poorly mapped neotectonic north and northeast-oriented faults in the western Pamir, as well as the Vakhsh Thrust System and the Darvaz Karakul Fault. These findings underscore potential sources of future seismic hazards. Furthermore, our expanded earthquake catalogue facilitates a deeper understanding of the interplay between crustal and intermediate seismic activity in the HKPR, shedding light on the deformation and active faulting resulting from Eurasian-Indian plate interactions.

Keywords