Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro
Robert D. Wojtyczka,
Arkadiusz Dziedzic,
Małgorzata Kępa,
Robert Kubina,
Agata Kabała-Dzik,
Tomasz Mularz,
Danuta Idzik
Affiliations
Robert D. Wojtyczka
Department and Institute of Microbiology and Virology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
Arkadiusz Dziedzic
Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Pl. Akademicki 17, 41-902 Bytom, Poland
Małgorzata Kępa
Department and Institute of Microbiology and Virology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
Robert Kubina
Department and Institute of Pathology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Ostrogórska 30, 41-200 Sosnowiec, Poland
Agata Kabała-Dzik
Department and Institute of Pathology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Ostrogórska 30, 41-200 Sosnowiec, Poland
Tomasz Mularz
Department and Institute of Microbiology and Virology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
Danuta Idzik
Department and Institute of Microbiology and Virology, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC) of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The synergy between berberine and antibiotics demonstrates the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections.