Actuators (May 2022)
Effects of the Installation Location of a Dielectric Barrier Discharge Plasma Actuator on the Active Passage Vortex Control of a Turbine Cascade at Low Reynolds Numbers
Abstract
Because axial flow turbines are widely used as the main components of jet engines and industrial gas turbines, their energy reduction effect is significant, even with a slight performance improvement. These turbines operate over a wide range of Reynolds numbers. However, at low Reynolds numbers below 1 × 105, the aerodynamic characteristics deteriorate greatly, due to the flow separation of the boundary layer on the blade suction surface and an increase in the secondary flow. In this study, an experiment to reduce the passage vortex was conducted using a dielectric barrier discharge plasma actuator, which is expected to operate with a new innovative active flow control technology. The plasma actuator was installed on the endwall of a linear turbine cascade in the test section of a wind tunnel. From the velocity distribution measured using particle image velocimetry, the secondary flow vector, turbulence intensity, and vorticity were analyzed. The input voltage and frequency of the plasma actuator were fixed at 12 kVp-p and 10 kHz, respectively. In particular, the optimum installation location of the plasma actuator was examined from upstream to mid-passage positions of the turbine cascade (normalized axial location of Z/Cax = −0.35 to 0.51). In addition, the effect of the Reynolds number was examined by varying it between Reout = 1.8 × 104 and 3.7 × 104. From the experimental results, it was found that the optimum location of the plasma actuator was immediately before the blade leading edge (Z/Cax = −0.20 to −0.06). This is because the inlet boundary layer can be accelerated near the blade leading edge, weakening the horseshoe vortex which initially causes the passage vortex. At a higher Reynolds number, the passage vortex suppression effect of the plasma actuator is weakened, because the flow induced by the plasma actuators becomes relatively weaker as the mainstream velocity increases with an increase in the Reynolds number.
Keywords