Microbiology Spectrum (Oct 2022)

Naturally Acquired Kelch13 Mutations in Plasmodium falciparum Strains Modulate In Vitro Ring-Stage Artemisinin-Based Drug Tolerance and Parasite Survival in Response to Hyperoxia

  • Sandra Duffy,
  • Vicky M. Avery

DOI
https://doi.org/10.1128/spectrum.01282-21
Journal volume & issue
Vol. 10, no. 5

Abstract

Read online

ABSTRACT The ring-stage survival assay was utilized to assess the impact of physiological hyperoxic stress on dihydroartemisinin (DHA) tolerance for a panel of Plasmodium falciparum strains with and without Kelch13 mutations. Strains without naturally acquired Kelch13 mutations or the postulated genetic background associated with delayed parasite clearance time demonstrated reduced proliferation under hyperoxic conditions in the subsequent proliferation cycle. Dihydroartemisinin tolerance in three isolates with naturally acquired Kelch13 mutations but not two genetically manipulated laboratory strains was modulated by in vitro hyperoxic stress exposure of early-ring-stage parasites in the cycle before drug exposure. Reduced parasite tolerance to additional derivatives, including artemisinin, artesunate, and OZ277, was observed within the second proliferation cycle. OZ439 and epoxomicin completely prevented parasite survival under both hyperoxia and normoxic in vitro culture conditions, highlighting the unique relationship between DHA tolerance and Kelch13 mutation-associated genetic background. IMPORTANCE Artemisinin-based combination therapy (ACT) for treating malaria is under intense scrutiny following treatment failures in the Greater Mekong subregion of Asia. This is further compounded by the potential for extensive loss of life if treatment failures extend to the African continent. Although Plasmodium falciparum has become resistant to all antimalarial drugs, artemisinin “resistance” does not present in the same way as resistance to other antimalarial drugs. Instead, a partial resistance or tolerance is demonstrated, associated with the parasite’s genetic profile and linked to a molecular marker referred to as K13. It is suggested that parasites may have adapted to drug treatment, as well as the presence of underlying population health issues such as hemoglobinopathies, and/or environmental pressures, resulting in parasite tolerance to ACT. Understanding parasite evolution and control of artemisinin tolerance will provide innovative approaches to mitigate the development of artemisinin tolerance and thereby artemisinin-based drug treatment failure and loss of life globally to malaria infections.

Keywords