Agriculture (Sep 2024)
An Optimized Semi-Supervised Generative Adversarial Network Rice Extraction Method Based on Time-Series Sentinel Images
Abstract
In response to the limitations of meteorological conditions in global rice growing areas and the high cost of annotating samples, this paper combines the Vertical-Vertical (VV) polarization and Vertical-Horizontal (VH) polarization backscatter features extracted from Sentinel-1 synthetic aperture radar (SAR) images and the NDVI, NDWI, and NDSI spectral index features extracted from Sentinel-2 multispectral images. By leveraging the advantages of an optimized Semi-Supervised Generative Adversarial Network (optimized SSGAN) in combining supervised learning and semi-supervised learning, rice extraction can be achieved with fewer annotated image samples. Within the optimized SSGAN framework, we introduce a focal-adversarial loss function to enhance the learning process for challenging samples; the generator module employs the Deeplabv3+ architecture, utilizing a Wide-ResNet network as its backbone while incorporating dropout layers and dilated convolutions to improve the receptive field and operational efficiency. Experimental results indicate that the optimized SSGAN, particularly when utilizing a 3/4 labeled sample ratio, significantly improves rice extraction accuracy, leading to a 5.39% increase in Mean Intersection over Union (MIoU) and a 2.05% increase in Overall Accuracy (OA) compared to the highest accuracy achieved before optimization. Moreover, the integration of SAR and multispectral data results in an OA of 93.29% and an MIoU of 82.10%, surpassing the performance of single-source data. These findings provide valuable insights for the extraction of rice information in global rice-growing regions.
Keywords