Journal of Functional Biomaterials (Jan 2024)

Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against <i>E. coli</i> and <i>S. aureus</i>

  • Elisa Restivo,
  • Emanuela Peluso,
  • Nora Bloise,
  • Giovanni Lo Bello,
  • Giovanna Bruni,
  • Marialaura Giannaccari,
  • Roberto Raiteri,
  • Lorenzo Fassina,
  • Livia Visai

DOI
https://doi.org/10.3390/jfb15010024
Journal volume & issue
Vol. 15, no. 1
p. 24

Abstract

Read online

Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM demonstrating no significant differences between brush and bar coater-modified surfaces, compared to the un-modified TPU (TPU Film). The effect of the surfaces on planktonic bacteria, evaluated by MTT assay, demonstrated their anti-adhesive effect on E. coli, while the bar coater significantly reduced staphylococcal planktonic adhesion and both bacterial biofilms compared to other samples. Interestingly, Pearson’s R coefficient analysis showed that Ra roughness and Haralick’s correlation feature were trend predictors for planktonic bacterial cells adhesion. The surface adhesion property was evaluated against NIH-3T3 murine fibroblasts by MTT and against human fibrinogen and human platelet-rich plasma by ELISA and LDH assay, respectively. An indirect cytotoxicity experiment against NIH-3T3 confirmed the biocompatibility of the TPUs. Overall, the results indicated that the deposition techniques did not alter the antibacterial and anti-adhesive surface properties of modified TPU compared to un-modified TPU, nor its bio- and hemocompatibility, confirming the suitability of TPU brush and bar coater films in the biomedical and pharmaceutical fields.

Keywords