Computers (Jul 2022)

Walsh–Hadamard Kernel Feature-Based Image Compression Using DCT with Bi-Level Quantization

  • Dibyalekha Nayak,
  • Kananbala Ray,
  • Tejaswini Kar,
  • Chiman Kwan

DOI
https://doi.org/10.3390/computers11070110
Journal volume & issue
Vol. 11, no. 7
p. 110

Abstract

Read online

To meet the high bit rate requirements in many multimedia applications, a lossy image compression algorithm based on Walsh–Hadamard kernel-based feature extraction, discrete cosine transform (DCT), and bi-level quantization is proposed in this paper. The selection of the quantization matrix of the block is made based on a weighted combination of the block feature strength (BFS) of the block extracted by projecting the selected Walsh–Hadamard basis kernels on an image block. The BFS is compared with an automatically generated threshold for applying the specific quantization matrix for compression. In this paper, higher BFS blocks are processed via DCT and high Q matrix, and blocks with lower feature strength are processed via DCT and low Q matrix. So, blocks with higher feature strength are less compressed and vice versa. The proposed algorithm is compared to different DCT and block truncation coding (BTC)-based approaches based on the quality parameters, such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) at constant bits per pixel (bpp). The proposed method shows significant improvements in performance over standard JPEG and recent approaches at lower bpp. It achieved an average PSNR of 35.61 dB and an average SSIM of 0.90 at a bpp of 0.5 and better perceptual quality with lower visual artifacts.

Keywords