Water (Mar 2018)

Effect of Meteorological Patterns on the Intensity of Streambank Erosion in a Proglacial Gravel-Bed River (Spitsbergen)

  • Waldemar Kociuba,
  • Grzegorz Janicki

DOI
https://doi.org/10.3390/w10030320
Journal volume & issue
Vol. 10, no. 3
p. 320

Abstract

Read online

Lower parts of proglacial rivers are commonly assumed to be characterised by a multiannual aggradation trend, and streambank erosion is considered to occur rarely and locally. In the years 2009–2013, detailed measurements of channel processes were performed in the Scott River (SW Spitsbergen). More than 60% of its surface area (10 km2) occupies non-glaciated valleys. Since the end of the Little Ice Age, the Scott Glacier has been subject to intensive retreat, resulting in the expansion of the terminoglacial and paraglacial zones. In this area, the Scott River develops an alluvial valley with a proglacial river, which has led to a comparatively low rate of fluvial transport, dominance of suspension over bedload, and the occurrence of various channel patterns. Measurements, performed in the lower course of the valley in two fixed cross-sections of the Scott River channel, document variable annual tendencies with a prevalence of scour over deposition processes in the channel bottom. The balance of scour and fill also differs in particular measurement cross-sections and during the summer season. The maximum erosion indices (1.7 m2) were related to single periods of floods with snow-glacier melt and rainfall origin. The contribution of streambank erosion was usually lower than that of deep erosion both in the annual cycle and during extreme events. The channel-widening index also suggests variable annual (from −1 m to +1 m) and inter-annual tendencies. During a three-day flood from August 2013, in a measurement profile at the mouth of the river, the NNW bank was laterally shifted by as much as 3 m. Annual and inter-seasonal indices of total channel erosion, however, show that changes in the channel-bottom morphology are equalised relatively fast, and in terms of balance the changes usually do not exceed 0.5% of a cross section’s area.

Keywords