Remote Sensing (Nov 2022)

Developing and Using Empirical Bio-Optical Algorithms in the Western Part of the Bering Sea in the Late Summer Season

  • Pavel A. Salyuk,
  • Igor E. Stepochkin,
  • Ekaterina B. Sokolova,
  • Svetlana P. Pugach,
  • Vasiliy A. Kachur,
  • Irina I. Pipko

DOI
https://doi.org/10.3390/rs14225797
Journal volume & issue
Vol. 14, no. 22
p. 5797

Abstract

Read online

This study aimed to assess the applicability of global bio-optical algorithms for the estimation of chlorophyll-a (chl-a) concentration (C) and develop regional empirical bio-optical algorithms for estimating C and colored dissolved organic matter (CDOM) content (D) from ocean remote sensing reflectance spectra in the western part of the Bering Sea in the late summer period. The analysis took into account possible problems with the different relative contributions of phytoplankton and CDOM to water-leaving radiance and possible errors associated with the atmosphere correction procedure for ocean color satellite data. Shipborne remote sensing measurements obtained using an above-water hyperspectral ASD HandHeld spectroradiometer, satellite measurements collected via MODIS and VIIRS radiometers, and in situ measurements of C and D in seawater were used. The simulated values of the different multispectral satellite radiometers with daily or 2-day global coverage, obtained by applying the corresponding spectral response functions to ship hyperspectral data, were also analyzed. In this paper, a list of recommended regional bio-optical algorithms is presented. Recommendations are given depending on the possible quality of atmospheric correction and the purpose of use. To obtain more precise estimations of C, OC3/OC4-like algorithms should be used. If the atmosphere correction is poor, then use OC2-like algorithms in which spectral bands in the 476–539 nm range should be used to estimate C and bands near 443 nm to estimate D; however, in the last case, this will provide only the order of magnitude. To estimate more independent fields of C and D, it is necessary to use a spectral range of 501–539 nm for chl-a and bands near 412 nm in the case of modern satellite radiometers (e.g., OLCI or SGLI), for which this band is not the first. Additionally, we showed that global bio-optical algorithms can be applied with acceptable accuracy and similar recommendations.

Keywords