Characterization and modeling of resistive switching phenomena in IGZO devices
G. Carvalho,
M. E. Pereira,
C. Silva,
J. Deuermeier,
A. Kiazadeh,
V. Tavares
Affiliations
G. Carvalho
INESC-TEC and Faculdade de Engenharia da Universidade do Porto, FEUP, 4200-465 Porto, Portugal
M. E. Pereira
CENIMAT/i3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Almada, 2825-097 Caparica, Portugal
C. Silva
CENIMAT/i3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Almada, 2825-097 Caparica, Portugal
J. Deuermeier
CENIMAT/i3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Almada, 2825-097 Caparica, Portugal
A. Kiazadeh
CENIMAT/i3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Almada, 2825-097 Caparica, Portugal
V. Tavares
INESC-TEC and Faculdade de Engenharia da Universidade do Porto, FEUP, 4200-465 Porto, Portugal
This study explores the resistive switching phenomena present in 4 µm2 amorphous Indium–Gallium–Zinc Oxide (IGZO) memristors. Despite being extensively reported in the literature, not many studies detail the mechanisms that dominate conduction on the different states of IGZO-based devices. In this article, we demonstrate that resistive switching occurs due to the modulation of the Schottky barrier present at the bottom interface of the device. Furthermore, thermionic field emission and field emission regimes are identified as the dominant conduction mechanisms at the high resistive state of the device, while the bulk-limited ohmic conduction is found at the low resistive state. Due to the high complexity associated with creating compact models of resistive switching, a data-driven model is drafted taking systematic steps.