PLoS ONE (Jan 2018)

First description of the life cycle of the jellyfish Rhizostoma luteum (Scyphozoa: Rhizostomeae).

  • Karen Kienberger,
  • Marta Riera-Buch,
  • Alexandre M Schönemann,
  • Vanessa Bartsch,
  • Roland Halbauer,
  • Laura Prieto

DOI
https://doi.org/10.1371/journal.pone.0202093
Journal volume & issue
Vol. 13, no. 8
p. e0202093

Abstract

Read online

Jellyfish blooms are a significant environmental problem that is increasing and may be influenced by anthropocentric practices such as overfishing, pollution, eutrophication, translocation, climate change, and ocean acidification. Many jellyfish have unknown life cycles leading to these blooms. We describe for the first time, the life cycle of scyphozoan jellyfish Rhizostoma luteum from the planula to the young medusa stages, based on laboratory observations. We also provide a preliminary assessment of temperature related to life stages. Comparisons were made with early life history stages of its sibling species Rhizostoma pulmo and Rhizostoma octopus. The life cycle of R. luteum follows the general pattern of metagenesis of scyphozoans. Scyphistoma culture was maintained in filtered seawater at 17-17.5 °C, salinity 37 and light photoperiod (12:12 h light:dark). Scyphistomae were exposed to an experimental temperature descent for two days to test their survival capacity under severe winter conditions. Only one asexual reproduction mode was observed, which is employed for propagation, consisting of podocyst formation with excystment, subsequent development of scyphistoma, strobilation and liberation of viable ephyra. The development of the ephyra to metaephyra was photodocumented, reaching the metaephyra stage in approximately 21-25 days. Young medusae grow rapidly and maturity was reached after a 3-month post-liberation period with a mean bell diameter of 13.27 ± 2.26 cm and wet weight of 181.53 ± 53 g. The life cycle of R. luteum resembles that of its congeners, with the distinction that it has the unique features of being a brooding species (internal fertilisation with subsequent release of planulae) and under the conditions tested, the predominantly strobilation type observed was monodisc, and not polydisc as with the other two species in the genus Rhizostoma. As R. luteum shows sufficient requisite to form blooms if environmental circumstances change, it is important to understand its life cycle.