Atmosphere (Sep 2024)

Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model

  • Lailatus Siami,
  • Yu-Chun Wang,
  • Lin-Chi Wang

DOI
https://doi.org/10.3390/atmos15091078
Journal volume & issue
Vol. 15, no. 9
p. 1078

Abstract

Read online

The open burning of sugarcane residue is commonly used as a low-cost and fast method during pre-harvest and post-harvest periods. However, this practice releases various pollutants, including dioxins. This study aims to predict polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs or dioxins) emissions using the grey model (GM (1,1)) and to map the annual flux spatial distribution at the provincial level from 2023 to 2028. An annual emission inventory at the provincial level was developed using the activity rate of dry crop residue from national agencies and literature, following the guidelines set by the United Nations Environment Programme (UNEP). Emission distributions from 2016 to 2022 were then mapped. The average PCDD/F emission values show significant variation among the provinces, averaging 309 pg TEQ/year. Spatially, regions with intensive sugarcane production, such as Lampung and East Java consistently show high emissions, often exceeding 400 pg/m2. Emissions calculated using the UNEP emission factor tend to be higher compared to other factors, due to its generic nature and lack of regional specificity. Emission predictions using GM (1,1) indicate that North Sumatra is expected to experience a steady increase in PCDD/Fs emissions, whereas South Sumatra and Lampung are projected are projected to see a slight decline. This forecast assumes no changes in regional intervention strategies. Most regions in Java Island show a gradual increase in emissions, except for East Java, which is predicted to have a slight decline from 416 pg/year in 2023 to 397 pg/year in 2028. Additionally, regions such as Gorontalo and parts of East Java are projected to remain ‘hotspots’ with consistently high emissions, highlighting the need for targeted interventions. To address emission hotspots, this study emphasizes the need for cleaner agricultural practices, enhanced enforcement of environmental regulations, and the integration of advanced monitoring technologies to mitigate the environmental and health impacts of PCDD/F emissions in Indonesia. Future studies should consider developing monthly emissions profiles to better account for local agricultural practices and seasonal conditions. The emission data generated in this study, which include both spatial and temporal distributions, are valuable for air quality modeling studies and can help assess the impact of current and future emissions on ambient air quality.

Keywords