Journal of High Energy Physics (Mar 2023)
On pentagon identity in Ding-Iohara-Miki algebra
Abstract
Abstract We notice that the famous pentagon identity for quantum dilogarithm functions and the five-term relation for certain operators related to Macdonald polynomials discovered by Garsia and Mellit can both be understood as specific cases of a general “master pentagon identity” for group-like elements in the Ding-Iohara-Miki (or quantum toroidal, or elliptic Hall) algebra. We prove this curious identity and discuss its implications.
Keywords