International Journal of Neonatal Screening (Nov 2020)

Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism

  • Willemijn J. van Rijt,
  • Peter C. J. I. Schielen,
  • Yasemin Özer,
  • Klaas Bijsterveld,
  • Fjodor H. van der Sluijs,
  • Terry G. J. Derks,
  • M. Rebecca Heiner-Fokkema

DOI
https://doi.org/10.3390/ijns6040083
Journal volume & issue
Vol. 6, no. 4
p. 83

Abstract

Read online

Stored dried blood spots (DBS) can provide valuable samples for the retrospective diagnosis of inborn errors of metabolism, and for validation studies for newborn blood spot screening programs. Acylcarnitine species are subject to degradation upon long-term storage at room temperature, but limited data are available on the stability in original samples and the impact on acylcarnitine ratios. We analysed complete acylcarnitine profiles by flow-injection tandem mass spectrometry in 598 anonymous DBS stored from 2013 to 2017, at +4 °C during the first year and thereafter at room temperature. The concentrations of C2-, C3-, C4-, C5-, C6-, C8-, C10:1-, C10-, C12:1-, C12-, C14:1-, C14-, C16:1-, C16-, C18:2-, C18:1-, C18-, C5OH+C4DC-, C18:1OH-, and C16DC-carnitine decreased significantly, whereas a positive trend was found for free carnitine. Only the C4/C8-, C8/C10-, C14:1/C10- and C14:1/C16-carnitine ratios appeared robust for the metabolite instability. The metabolite instability may provoke the wrong interpretation of test results in the case of retrospective studies and risk the inaccurate estimation of cut-off targets in validation studies when only stored control DBS are used. We recommend including control DBS in diagnostic, retrospective cohort studies, and, for validation studies, we recommend using fresh samples and repeatedly re-evaluating cut-off targets.

Keywords