iScience (Feb 2022)

A jerk-based algorithm ACCEL for the accurate classification of sleep–wake states from arm acceleration

  • Koji L. Ode,
  • Shoi Shi,
  • Machiko Katori,
  • Kentaro Mitsui,
  • Shin Takanashi,
  • Ryo Oguchi,
  • Daisuke Aoki,
  • Hiroki R. Ueda

Journal volume & issue
Vol. 25, no. 2
p. 103727

Abstract

Read online

Summary: Arm acceleration data have been used to measure sleep–wake rhythmicity. Although several methods have been developed for the accurate classification of sleep–wake episodes, a method with both high sensitivity and specificity has not been fully established. In this study, we developed an algorithm, named ACceleration-based Classification and Estimation of Long-term sleep–wake cycles (ACCEL) that classifies sleep and wake episodes using only raw accelerometer data, without relying on device-specific functions. The algorithm uses a derivative of triaxial acceleration (jerk), which can reduce individual differences in the variability of acceleration data. Applying a machine learning algorithm to the jerk data achieved sleep–wake classification with a high sensitivity (>90%) and specificity (>80%). A jerk-based analysis also succeeded in recording periodic activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a useful method for large-scale sleep measurement using simple accelerometers in real-world settings.

Keywords