Фармация и фармакология (Пятигорск) (Jul 2019)
EFFECTS OF VARIOUS AVERSIVE ENVIRONMENTS ON OXYGEN CONSUMPTION OF MUSCLE AND BLOOD IN MICE UNDER CONDITIONS OF THE “FORCED SWIMMING” TEST
Abstract
The aim of the study is to assess the effect of various aversive environments on the oxygen consumption in muscles and blood in mice Under conditions of the “forced swimming” test.Materials and methods. The study was performed on outbred male mice. Exhausting physical activity was modeled in the “forced swimming” test in various aversive environments. The oxygen consumption by the muscle tissue, as well as the oxygen capacity of the blood, were estimated using the respirometry method (AKPM1-01L (“Alfa Bassens”, Russia)).Results. In the course of the study it was found out that in the group of the animals swimming in hot water (at the temperature of 41°C) as an aversive environment, there was no significant change in the oxygen consumption by mitochondria of striated muscle and by red blood cells in comparison with the intact group of the animals. At the same time, in the group of the mice, where cold water (at the temperature of 15°C) as an aversive environment was used, a statistically significant (by the end of the experiment) decrease in the swimming time was observed in relation to the intact group of the animals. It was accompanied by a decrease in the oxygen consumption by muscle mitochondria, with a constant level of the blood oxygenation. Under conditions of exhausting physical exertion, in the group of the animals that received Metaprot®, an increase in working capacity was noted in both hot and cold water. After peak days of working capacity, a slight decrease in physical activity was observed in both experimental groups. At the same time, it should be noted that oxygenation of blood and muscle tissue against the background of exhausting physical exertion in the group that received Metaprot®, did not differ from the group of intact animals in various aversive environments.Conclusion. Thus, based on the obtained data, it can be assumed that under conditions of “forced swimming” with loading, the most profound changes in the structure and functions of the striated muscles are observed in animals in cold (15°С) water That is reflected in a decrease in the physical strain and in reducing the oxygen consumption by muscle tissue. The use of the drug Metaprot® promoted correcting the changes in the physical performance of the animals, which was reflected in its increase by 144.8% (p <0.05), compared with the initial swimming time of this group, without the oxygen consumption by erythrocytes and mitochondria of striated muscles.
Keywords