JDS Communications (Sep 2023)

Environmental and biological factors that influence feeding behavior of Holstein calves in automated milk feeding systems

  • Maria E. Montes,
  • Jarrod Doucette,
  • Luiz F. Brito,
  • Jacquelyn P. Boerman

Journal volume & issue
Vol. 4, no. 5
pp. 379 – 384

Abstract

Read online

Automated milk feeders (AMF) used for dairy calves continuously provide individual feeding behavior measurements. The objective of this retrospective cohort study was to evaluate the association between temperature-humidity index (THI), birth weight, and dam parity characteristics on feeding behavior (i.e., milk consumption and drinking speed). Historical data sets generated from a single commercial dairy farm, where healthy (not treated for bovine respiratory disease, enteric disease, or injury) Holstein calves were fed up to 24 L/d of milk, were used for the analysis. A total of 5,312 female Holstein calves born between August 2015 and August 2021 (mean birth weight ± standard deviation: 40.7 ± 4.7 kg) on a commercial dairy farm were fed up to 24 L/d of nonsaleable milk for the first 32 d. For the analyses, feeding behavior data from the AMF system were combined with demographic data from the farm management software, and weather records from the closest public weather station (7 km away). Linear mixed models used to analyze daily milk consumption and drinking speed included THI, birth weight, dam parity, and feeding day as fixed effects, and feeder and calf within feeder as random effects. These models explained 57% of the total variation in milk consumption and 48% of the variation in drinking speed. Calves born from primiparous cows had the lowest milk consumption and the greatest drinking speed in comparison to calves born from multiparous cows. Calves with heavier birth weights had higher milk consumption and faster drinking speed than lighter calves. Drinking speed was negatively associated with THI. Including data derived from individual calves and their environmental conditions in data sets exploring feeding behavior from AMF would control for variation and improve the predictive models for performance assessment.