OncoTargets and Therapy (May 2016)

Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

  • Pathan AAK,
  • Panthi B,
  • Khan Z,
  • Koppula PR,
  • Alanazi MS,
  • Sachchidanand,
  • Parine NR,
  • Chourasia M

Journal volume & issue
Vol. 2016, no. Issue 1
pp. 2575 – 2584

Abstract

Read online

Akbar Ali Khan Pathan,1,2,* Bhavana Panthi,3,* Zahid Khan,1 Purushotham Reddy Koppula,4–6 Mohammed Saud Alanazi,1 Sachchidanand,3 Narasimha Reddy Parine,1 Mukesh Chourasia3,* 1Genome Research Chair (GRC), Department of Biochemistry, College of Science, King Saud University, 2Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India; 4Department of Internal Medicine, School of Medicine, 5Harry S. Truman Memorial Veterans Affairs Hospital, 6Department of Radiology, School of Medicine, Columbia, MO, USA *These authors contributed equally to this work Objective: Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results: Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion: Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. Keywords: antitumor agent, K-Ras, molecular docking, molecular modeling, virtual screening

Keywords