Royal Society Open Science (Nov 2022)

Shifts in evolutionary balance of phenotypes under environmental changes

  • Maria Kleshnina,
  • Jody C. McKerral,
  • Cecilia González-Tokman,
  • Jerzy A. Filar,
  • James G. Mitchell

DOI
https://doi.org/10.1098/rsos.220744
Journal volume & issue
Vol. 9, no. 11

Abstract

Read online

Environments shape communities by driving individual interactions and the evolutionary outcome of competition. In static, homogeneous environments a robust, evolutionary stable, outcome is sometimes reachable. However, inherently stochastic, this evolutionary process need not stabilize, resulting in a dynamic ecological state, often observed in microbial communities. We use evolutionary games to study the evolution of phenotypic competition in dynamic environments. Under the assumption that phenotypic expression depends on the environmental shifts, existing periodic relationships may break or result in formation of new periodicity in phenotypic interactions. The exact outcome depends on the environmental shift itself, indicating the importance of understanding how environments influence affected systems. Under periodic environmental fluctuations, a stable state preserving dominant phenotypes may exist. However, rapid environmental shifts can lead to critical shifts in the phenotypic evolutionary balance. This might lead to environmentally favoured phenotypes dominating making the system vulnerable. We suggest that understanding of the robustness of the system’s current state is necessary to anticipate when it will shift to a new equilibrium via understanding what level of perturbations the system can take before its equilibrium changes. Our results provide insights in how microbial communities can be steered to states where they are dominated by desired phenotypes.

Keywords