Physical Review Special Topics. Accelerators and Beams (Jun 2009)

Coaxial two-channel high-gradient dielectric wakefield accelerator

  • G. V. Sotnikov,
  • T. C. Marshall,
  • J. L. Hirshfield

DOI
https://doi.org/10.1103/PhysRevSTAB.12.061302
Journal volume & issue
Vol. 12, no. 6
p. 061302

Abstract

Read online Read online

A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS) for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600 MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33 mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1 GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.