PLoS ONE (Jan 2018)

CRB3 and the FERM protein EPB41L4B regulate proliferation of mammary epithelial cells through the release of amphiregulin.

  • Stephanie J Walker,
  • Laura M Selfors,
  • Ben L Margolis,
  • Joan S Brugge

DOI
https://doi.org/10.1371/journal.pone.0207470
Journal volume & issue
Vol. 13, no. 11
p. e0207470

Abstract

Read online

Numerous observations have suggested a connection between the maintenance of cell polarity and control of cell proliferation; however, the mechanisms underlying these connections remain poorly understood. Here we found that ectopic expression of CRB3, which was previously shown to restore tight junctions and membrane polarity in MCF-10A cells, induced a hyperproliferative phenotype, with significantly enlarged acini in basement membrane culture, similar to structures induced by expression of proliferative oncogenes such as cyclinD1. We found that CRB3-induced proliferation is epidermal growth factor (EGF)-independent and occurs through a mechanism that involves secretion of the EGF-family ligand, amphiregulin (AREG). The increase in AREG secretion is associated with an increase in the number and size of both early and late endosomes. Both the proliferative and endocytic phenotypes associated with CRB3 expression require the FERM-binding domain (FBD) but not the PDZ-binding domain of CRB3, arguing that this proliferative phenotype is independent of the PDZ-dependent polarity signaling by CRB3. We identified the FBD-containing protein, EPB41L4B, as an essential mediator of CRB3-driven proliferation and observed that the CRB3-dependent changes in endocytic trafficking were also dependent on EPB41L4B. Taken together, these data reveal a previously uncharacterized role for CRB3 in regulating proliferation in mammalian cells that is associated with changes in the endocytic trafficking machinery.