Neutrosophic Sets and Systems (Nov 2019)

Plithogenic Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi Attribute Decision Making Technique

  • Shazia Rana,
  • Madiha Qayyum,
  • Muhammad Saeed,
  • F. Smarandache,
  • Bakhtawar Ali Khan

DOI
https://doi.org/10.5281/zenodo.3382507
Journal volume & issue
Vol. 28
pp. 34 – 50

Abstract

Read online

In this paper, initially a matrix representation of Plithogenic Hypersoft Set (PHSS) is introduced and then with the help of this matrix some local operators for Plithogenic Fuzzy Hypersoft set (PFHSS) are developed. These local operators are used to generalize PFHSS to Plithogenic Fuzzy Whole Hypersoft set (PFWHSS). The generalized PFWHSS set is hybridization of Fuzzy Hypersoft set (which represent multiattributes and their subattributes as a combined whole membership i.e. case of having an exterior view of the event) and the Plithogenic Fuzzy Hypersoft set (in which multi attributes and their subattributes are represented with individual memberships case of having interior view). Thus, the speciality of PFWHSS is its presentation of an exterior and interior view of a situation simultaneously. Later, the PFWHSS is employed in development of multi attributes decision making scheme named as Frequency Matrix Multi Attributes Decision making scheme (FMMADMS). This innovative technique is not only simpler than any of the former MADM techniques, but also has a unique capability of dealing mathematically a variety of human mind psychologies at every level that are working in different environments (fuzzy, intuitionistic, neutrosophic, plithogenic). Besides, FMMADMS also provides the percentage authenticity of the final ranking which in itself is a new idea providing a transparent and unbiased ranking. Moreover, the new introduced idea of frequency matrix handles the ranking ties in the best possible way and has an ability to provide the authenticity comparative analysis of previously developed schemes. Lastly, application of this FMMADMS is described as a numerical example for a case of ranking and selecting the best alternative.