Science and Technology of Nuclear Installations (Jan 2018)

Analysis of Steam Explosion under Conditions of Partially Flooded Cavity and Submerged Reactor Vessel

  • Sang Ho Kim,
  • Seong-Wan Hong,
  • Rae-Joon Park

DOI
https://doi.org/10.1155/2018/3106039
Journal volume & issue
Vol. 2018

Abstract

Read online

A steam explosion in a reactor cavity makes a mechanical load of the pressure pulse, which can result in a failure of the containment isolation. To prove the integrity of the containment during the ex-vessel steam explosion, the effects of water conditions on a steam explosion have to be identified, and the impulse of a steam explosion has to be exactly assessed. In this study, the analyses for steam explosions were performed for the conditions of a partially flooded cavity and a submerged-vessel in a pressurized water reactor. The entry velocity of a corium jet for the scale of the test facility was varied to simulate the two plant conditions. The TEXAS-V code was used for simulating the phases of premixing and explosion, and the load of a steam explosion was estimated based on the pressure variation. The impulse of a steam explosion under the condition of a corium jet falling into water without a free-fall height is bigger than that under a free-fall height. The fragmented mass of corium in an explosion phase and the distribution of steam fraction are the main parameters for the total load of the steam explosion. This study is expected to contribute to analyses of a steam explosion for a severe accident management strategy.