Cancers (Dec 2023)

TF/PAR2 Signaling Axis Supports the Protumor Effect of Neutrophil Extracellular Traps (NETs) on Human Breast Cancer Cells

  • Karina Martins-Cardoso,
  • Aquiles Maçao,
  • Juliana L. Souza,
  • Alexander G. Silva,
  • Sandra König,
  • Remy Martins-Gonçalves,
  • Eugenio D. Hottz,
  • Araci M. R. Rondon,
  • Henri H. Versteeg,
  • Patrícia T. Bozza,
  • Vitor H. Almeida,
  • Robson Q. Monteiro

DOI
https://doi.org/10.3390/cancers16010005
Journal volume & issue
Vol. 16, no. 1
p. 5

Abstract

Read online

Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer. Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein, tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether NETs could induce TF expression in breast cancer cells and further promote procoagulant and intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs gene signatures and PAR2 gene expression also showed a significant positive correlation in the bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2 signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in human breast cancer cells.

Keywords