BMC Genomics (Jan 2008)

Global mRNA expression analysis in myosin II deficient strains of <it>Saccharomyces cerevisiae </it>reveals an impairment of cell integrity functions

  • Rivera-Molina Félix E,
  • Díaz-Blanco Nitza L,
  • Irizarry Rafael A,
  • Rodríguez-Quiñones José F,
  • Gómez-Garzón Diana,
  • Rodríguez-Medina José R

DOI
https://doi.org/10.1186/1471-2164-9-34
Journal volume & issue
Vol. 9, no. 1
p. 34

Abstract

Read online

Abstract Background The Saccharomyces cerevisiae MYO1 gene encodes the myosin II heavy chain (Myo1p), a protein required for normal cytokinesis in budding yeast. Myo1p deficiency in yeast (myo1Δ) causes a cell separation defect characterized by the formation of attached cells, yet it also causes abnormal budding patterns, formation of enlarged and elongated cells, increased osmotic sensitivity, delocalized chitin deposition, increased chitin synthesis, and hypersensitivity to the chitin synthase III inhibitor Nikkomycin Z. To determine how differential expression of genes is related to these diverse cell wall phenotypes, we analyzed the global mRNA expression profile of myo1Δ strains. Results Global mRNA expression profiles of myo1Δ strains and their corresponding wild type controls were obtained by hybridization to yeast oligonucleotide microarrays. Results for selected genes were confirmed by real time RT-PCR. A total of 547 differentially expressed genes (p ≤ 0.01) were identified with 263 up regulated and 284 down regulated genes in the myo1Δ strains. Gene set enrichment analysis revealed the significant over-representation of genes in the protein biosynthesis and stress response categories. The SLT2/MPK1 gene was up regulated in the microarray, and a myo1Δslt2Δ double mutant was non-viable. Overexpression of ribosomal protein genes RPL30 and RPS31 suppressed the hypersensitivity to Nikkomycin Z and increased the levels of phosphorylated Slt2p in myo1Δ strains. Increased levels of phosphorylated Slt2p were also observed in wild type strains under these conditions. Conclusion Following this analysis of global mRNA expression in yeast myo1Δ strains, we conclude that 547 genes were differentially regulated in myo1Δ strains and that the stress response and protein biosynthesis gene categories were coordinately regulated in this mutant. The SLT2/MPK1 gene was confirmed to be essential for myo1Δ strain viability, supporting that the up regulated stress response genes are regulated by the PKC1 cell integrity pathway. Suppression of Nikkomycin Z hypersensitivity together with Slt2p phosphorylation was caused by the overexpression of ribosomal protein genes RPL30 and RPS31. These ribosomal protein mRNAs were down regulated in the myo1Δ arrays, suggesting that down regulation of ribosomal biogenesis may affect cell integrity in myo1Δ strains.