New Polyhydroxysteroid Glycosides with Antioxidant Activity from the Far Eastern Sea Star <i>Ceramaster patagonicus</i>
Timofey V. Malyarenko,
Viktor M. Zakharenko,
Alla A. Kicha,
Arina I. Ponomarenko,
Igor V. Manzhulo,
Anatoly I. Kalinovsky,
Roman S. Popov,
Pavel S. Dmitrenok,
Natalia V. Ivanchina
Affiliations
Timofey V. Malyarenko
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Viktor M. Zakharenko
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Alla A. Kicha
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Arina I. Ponomarenko
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
Igor V. Manzhulo
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
Anatoly I. Kalinovsky
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Roman S. Popov
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Pavel S. Dmitrenok
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Natalia V. Ivanchina
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
Four new glycosides of polyhydroxysteroids, ceramasterosides A, B, D, and E (1–4), and two previously known compounds, ceramasteroside C1 (5) and attenuatoside B-I (6), were isolated from an extract of a deep-sea sea star species, the orange cookie star Ceramaster patagonicus. The structures of 1–4 were elucidated by the extensive NMR and ESIMS methods. Steroid monoglycosides 1 and 2 had a common 3β,6α,8,15β,16β-pentahydroxysteroid nucleus and a C–29 oxidized stigmastane side chain and differed from each other only in monosaccharide residues. Ceramasteroside A (1) contained 3-O-methyl-4-O-sulfated β-D-xylopyranose, while ceramasteroside B (2) had 3-O-methyl-4-O-sulfated β-D-glucopyranose, recorded from starfish-derived steroid glycosides for the first time. Their biological activity was studied using a model of lipopolysaccharide-induced (LPS) inflammation in a SIM-A9 murine microglial cell line. During the LPS-induced activation of microglial cells, 1, 3, and 5, at a non-toxic concentration of 1 µM, showed the highest efficiency in reducing the production of intracellular NO, while 4 proved to be most efficient in reducing the extracellular nitrite production. All the test compounds reduced the LPS-induced malondialdehyde (MDA) production. The in vitro experiments have demonstrated, for the first time, the antioxidant activity of the compounds under study.