Mathematics (Feb 2023)
Efficient and Privacy-Preserving Categorization for Encrypted EMR
Abstract
Electronic Health Records (EHRs) must be encrypted for patient privacy; however, an encrypted EHR is a challenge for the administrator to categorize. In addition, EHRs are predictable and possible to be guessed, although they are in encryption style. In this work, we propose a secure scheme to support the categorization of encrypted EHRs, according to some keywords. In regard to the predictability of EHRs, we focused on guessing attacks from not only the storage server but also the group administrator. The experiment result shows that our scheme is efficient and practical.
Keywords