Nature Communications (Nov 2024)

Hierarchical regulation of functionally antagonistic neuropeptides expressed in a single neuron pair

  • Ichiro Aoki,
  • Luca Golinelli,
  • Eva Dunkel,
  • Shripriya Bhat,
  • Erschad Bassam,
  • Isabel Beets,
  • Alexander Gottschalk

DOI
https://doi.org/10.1038/s41467-024-53899-7
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Neuronal communication involves small-molecule transmitters, gap junctions, and neuropeptides. While neurons often express multiple neuropeptides, our understanding of the coordination of their actions and their mutual interactions remains limited. Here, we demonstrate that two neuropeptides, NLP-10 and FLP-1, released from the same interneuron pair, AVKL/R, exert antagonistic effects on locomotion speed in Caenorhabditis elegans. NLP-10 accelerates locomotion by activating the G protein-coupled receptor NPR-35 on premotor interneurons that promote forward movement. Notably, we establish that NLP-10 is crucial for the aversive response to mechanical and noxious light stimuli. Conversely, AVK-derived FLP-1 slows down locomotion by suppressing the secretion of NLP-10 from AVK, through autocrine feedback via activation of its receptor DMSR-7 in AVK neurons. Our findings suggest that peptidergic autocrine motifs, exemplified by the interaction between NLP-10 and FLP-1, might represent a widespread mechanism in nervous systems across species. These mutual functional interactions among peptidergic co-transmitters could fine-tune brain activity.