PLoS Computational Biology (Jan 2013)

Polymorphisms in the F8 gene and MHC-II variants as risk factors for the development of inhibitory anti-factor VIII antibodies during the treatment of hemophilia a: a computational assessment.

  • Gouri Shankar Pandey,
  • Chen Yanover,
  • Tom E Howard,
  • Zuben E Sauna

DOI
https://doi.org/10.1371/journal.pcbi.1003066
Journal volume & issue
Vol. 9, no. 5
p. e1003066

Abstract

Read online

The development of neutralizing anti-drug-antibodies to the Factor VIII protein-therapeutic is currently the most significant impediment to the effective management of hemophilia A. Common non-synonymous single nucleotide polymorphisms (ns-SNPs) in the F8 gene occur as six haplotypes in the human population (denoted H1 to H6) of which H3 and H4 have been associated with an increased risk of developing anti-drug antibodies. There is evidence that CD4+ T-cell response is essential for the development of anti-drug antibodies and such a response requires the presentation of the peptides by the MHC-class-II (MHC-II) molecules of the patient. We measured the binding and half-life of peptide-MHC-II complexes using synthetic peptides from regions of the Factor VIII protein where ns-SNPs occur and showed that these wild type peptides form stable complexes with six common MHC-II alleles, representing 46.5% of the North American population. Next, we compared the affinities computed by NetMHCIIpan, a neural network-based algorithm for MHC-II peptide binding prediction, to the experimentally measured values and concluded that these are in good agreement (area under the ROC-curve of 0.778 to 0.972 for the six MHC-II variants). Using a computational binding predictor, we were able to expand our analysis to (a) include all wild type peptides spanning each polymorphic position; and (b) consider more MHC-II variants, thus allowing for a better estimation of the risk for clinical manifestation of anti-drug antibodies in the entire population (or a specific sub-population). Analysis of these computational data confirmed that peptides which have the wild type sequence at positions where the polymorphisms associated with haplotypes H3, H4 and H5 occur bind MHC-II proteins significantly more than a negative control. Taken together, the experimental and computational results suggest that wild type peptides from polymorphic regions of FVIII constitute potential T-cell epitopes and thus could explain the increased incidence of anti-drug antibodies in hemophilia A patients with haplotypes H3 and H4.