PLoS Neglected Tropical Diseases (Jan 2023)

In silico investigation of cytochrome bc1 molecular inhibition mechanism against Trypanosoma cruzi.

  • Stefano Muscat,
  • Gianvito Grasso,
  • Leonardo Scapozza,
  • Andrea Danani

DOI
https://doi.org/10.1371/journal.pntd.0010545
Journal volume & issue
Vol. 17, no. 1
p. e0010545

Abstract

Read online

Chagas' disease is a neglected tropical disease caused by the kinetoplastid protozoan Trypanosoma cruzi. The only therapies are the nitroheterocyclic chemicals nifurtimox and benznidazole that cause various adverse effects. The need to create safe and effective medications to improve medical care remains critical. The lack of verified T. cruzi therapeutic targets hinders medication research for Chagas' disease. In this respect, cytochrome bc1 has been identified as a promising therapeutic target candidate for antibacterial medicines of medical and agricultural interest. Cytochrome bc1 belongs to the mitochondrial electron transport chain and transfers electrons from ubiquinol to cytochrome c1 by the action of two catalytic sites named Qi and Qo. The two binding sites are highly selective, and specific inhibitors exist for each site. Recent studies identified the Qi site of the cytochrome bc1 as a promising drug target against T. cruzi. However, a lack of knowledge of the drug mechanism of action unfortunately hinders the development of new therapies. In this context, knowing the cause of binding site selectivity and the mechanism of action of inhibitors and substrates is crucial for drug discovery and optimization processes. In this paper, we provide a detailed computational investigation of the Qi site of T. cruzi cytochrome b to shed light on the molecular mechanism of action of known inhibitors and substrates. Our study emphasizes the action of inhibitors at the Qi site on a highly unstructured portion of cytochrome b that could be related to the biological function of the electron transport chain complex.