Energies (Dec 2016)

Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

  • Ming-Tse Kuo,
  • Ming-Chang Tsou

DOI
https://doi.org/10.3390/en10010024
Journal volume & issue
Vol. 10, no. 1
p. 24

Abstract

Read online

Quasi-resonant flyback (QRF) converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI) in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

Keywords