Biomedicines (Sep 2024)
Prognostic Values of Ferroptosis-Related Proteins ACSL4, SLC7A11, and CHAC1 in Cholangiocarcinoma
Abstract
Background: The epithelial malignant tumor known as cholangiocarcinoma (CCA) is most commonly found in Southeast Asia, particularly in northeastern Thailand. Previous research has indicated that the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and ChaC glutathione-specific γ-glutamylcyclotransferase (CHAC1) as ferroptosis-related proteins is associated with poorer prognosis in several cancers. The role of these three proteins in CCA is still unclear. The present study aimed to investigate the expression levels of ACSL4, SLC7A11, and CHAC1, all potential ferroptosis biomarkers, in CCA. Methods: The ACSL4, SLC7A11, and CHAC1 protein expression levels in 137 CCA tissues were examined using immunohistochemistry, while 61 CCA serum samples were evaluated using indirect ELISA. The associations between the expression levels of ACSL4, SLC7A11, and CHAC1 and patient clinicopathological data were evaluated to determine the clinical significance of these proteins. Results: The expression levels of ACSL4, SLC7A11, and CHAC1 were assessed in CCA tissues. A significant association was observed between high ACSL4 levels and extrahepatic CCA, tumor growth type, and elevated alanine transferase (ALT). There was also a positive association between elevated SLC7A11 levels and tumor growth type. Additionally, the upregulation of CHAC1 was significantly associated with a shorter survival time in patients. High levels of ACSL4 and SLC7A11 in CCA sera were both significantly associated with advanced tumor stages and abnormal liver function test results, indicating that they could be used as a reliable prognostic biomarker panel in patients with CCA. Conclusions: The results of the present study demonstrated that the upregulation of ACSL4, SLC7A11, and CHAC1 could be used as a valuable biomarker panel for predicting prognosis parameters in CCA. Furthermore, ACSL4 and SLC7A11 could potentially serve as complementary markers for improving the accuracy of prognosis prediction when CCA sera is used. These less invasive biomarkers could facilitate effective treatment planning.
Keywords