Heliyon (Jul 2024)

Analysis of temporal and spatial dynamics and driving factors in the aquaculture industry of Fuding City, China

  • Yunhe Zhang,
  • Ting Yu,
  • Niandong Wang

Journal volume & issue
Vol. 10, no. 13
p. e33972

Abstract

Read online

Background: The sustainable development of aquaculture is a crucial determinant of food security, the well-being of aquaculture practitioners, and economic growth within coastal regions. Considering the existing gap in research regarding spatial and temporal development of aquaculture, this study investigates the progression of aquaculture practices over time and across various locations in Fuding City, China. Methods: We retrospectively collected temporal and spatial data on aquaculture, as well as demographic, social, and economic data for Fuding City from 2010 to 2020. By employing 3D kernel density analysis, we illustrated the temporal and spatial changes in aquaculture. Furthermore, we utilized Ordinary Least Squares regression to investigate the driving factors behind the spatial changes in the aquaculture industry. Results: Over the past decades, we observed that in Fuding City, both the number of fishing rafts and aquaculture households initially decreased and then increased. The spatial distribution of aquaculture experienced a shift from the west (inner bay area) to the east (coastal area). Additionally, the type of fishing rafts also varied by region, with traditional rafts dominating the western inner bay and plastic rafts prevalent in the eastern offshore areas. Analysis of driving factors revealed that at least six factors have a significant positive correlation with the eastward shift of the aquaculture industry's center, including the proportion of migrant population, proportion of aquaculture to total fishery output, average temperature, investment in aquaculture technology, total fish sales, and GDP of Fuding City. Conclusion: This study examines the spatial and temporal dynamics of aquaculture in Fuding City from 2010 to 2020, proposing an innovative approach to spatial optimization that integrates both horizontal and vertical strategies. These insights aim to guide the development of coastal aquaculture policies and support sustainable regional development, fostering a balanced coexistence between human activities and marine environments.

Keywords