European Journal of Hybrid Imaging (Aug 2020)
Preliminary clinical assessment of dynamic carbon-11 methionine positron-emission tomography/computed tomography for the diagnosis of the pathologies in patients with musculoskeletal lesions: a prospective study
Abstract
Abstract Background This study prospectively assessed the diagnostic capacity of dynamic carbon-11 methionine (C-11 MET) positron-emission tomography (PET)/computed tomography for the diagnosis of pathologies in patients with primary unknown musculoskeletal lesions (MSLs). In total, 13 patients with MSLs underwent dynamic scans (5–10 [phase 1], 10–15 [phase 2], 15–20 [phase 3], 20–25 [phase 4], 25–30 [phase 5], and 30–35 [phase 6] min post-injection of C-11 MET). We statistically compared the maximum standardised uptake values (SUVmax) and corresponding retention index for dynamic scans (RI-SUV) for five benign MSLs (BMSLs), five primary malignant musculoskeletal tumours (PMMSTs), four metastatic musculoskeletal tumours (MMSTs), and three malignant lymphoma (ML) cases and explored their diagnostic capacities using receiver operating characteristic (ROC) curve analyses. Results SUVmax gradually decreased or remained similar with minimal fluctuations in all BMSL cases and four of five PMMST cases. In contrast, SUVmax increased over time in one case of PMMST and in all cases of MMST and ML. Significant differences were observed in SUVmax for all time phases and RI-SUV between BMSLs and MMSLs, in SUVmax for all time phases between PMMSTs and BMSLs, in SUVmax for all time phases and RI-SUV between non-PMMST-malignant tumours and BMSL, and in RI-SUV between non-PMMST-malignant tumours and PMMST. In ROC analyses, the areas under the curve yielded the highest values at 1.00 for differentiating most intergroup comparisons. Conclusions Dynamic C-11 MET PET scans have the potential to be good predictors of discriminating MSLs in patients with primary unknown MSLs in clinical practice.
Keywords