Odor cueing of declarative memories during sleep enhances coordinated spindles and slow oscillations
Andrea Sánchez-Corzo,
David M Baum,
Martín Irani,
Svenja Hinrichs,
Renate Reisenegger,
Grace A Whitaker,
Jan Born,
Ranganatha Sitaram,
Jens G Klinzing
Affiliations
Andrea Sánchez-Corzo
Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile
David M Baum
Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile
Martín Irani
Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Psychology, University of Illinois Urbana-Champaign, IL, United States
Svenja Hinrichs
Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
Renate Reisenegger
Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Centre for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Giessen, Germany
Grace A Whitaker
Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Electrical and Electronics Engineering, Federico Santa María Technical University, Valparaíso 1680, Chile
Jan Born
Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
Ranganatha Sitaram
Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile; Corresponding authors at: Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States
Jens G Klinzing
Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
Long-term memories are formed by repeated reactivation of newly encoded information during sleep. This process can be enhanced by using memory-associated reminder cues like sounds and odors. While auditory cueing has been researched extensively, few electrophysiological studies have exploited the various benefits of olfactory cueing. We used high-density electroencephalography in an odor-cueing paradigm that was designed to isolate the neural responses specific to the cueing of declarative memories. We show widespread cueing-induced increases in the duration and rate of sleep spindles. Higher spindle rates were most prominent over centro-parietal areas and largely overlapping with a concurrent increase in the amplitude of slow oscillations (SOs). Interestingly, greater SO amplitudes were linked to a higher likelihood of coupling a spindle and coupled spindles expressed during cueing were more numerous in particular around SO up states. We thus identify temporally and spatially coordinated enhancements of sleep spindles and slow oscillations as a candidate mechanism behind cueing-induced memory processing. Our results further demonstrate the feasibility of studying neural activity patterns linked to such processing using olfactory cueing during sleep.