Symmetry (May 2023)
Contralateral Asymmetry in Cycling Power Is Reproducible and Independent of Exercise Intensity at Submaximal Power Outputs
Abstract
The purpose of the current investigation was to examine the effects of exercise intensity on asymmetry in pedal forces when the accumulation of fatigue is controlled for, and to assess the reliability of asymmetry outcomes during cycling. Participants completed an incremental cycling test to determine maximal oxygen consumption and the power that elicited maximal oxygen consumption (pVO2max). Participants were allotted 30 min of recovery before then cycling at 60%, 70%, 80%, and 90% of pVO2max for 3 min each, with 5 min of active recovery between each intensity. Participants returned to the laboratory on separate days to repeat all measures. A two-way repeated measures analysis of variance (ANOVA) was utilized to detect differences in power production AI at each of the submaximal exercise intensities and between Trials 1 and 2. Intraclass correlations were utilized to assess the test–retest reliability for the power production asymmetry index (AI). An ANOVA revealed no significant intensity–visit interactions for the power production AI (f = 0.835, p = 0.485, η2 = 0.077), with no significant main effects present. ICC indicated excellent reliability in the power production AI at all intensities. Exercise intensity did not appear to affect asymmetry in pedal forces, while excellent reliability was observed in asymmetry outcomes.
Keywords