In Vitro Modulation of Spontaneous Activity in Embryonic Cardiomyocytes Cultured on Poly(vinyl alcohol)/Bioglass Type 58S Electrospun Scaffolds
Filiberto Rivera-Torres,
Alfredo Maciel-Cerda,
Gertrudis Hortensia González-Gómez,
Alicia Falcón-Neri,
Karla Gómez-Lizárraga,
Héctor Tomás Esquivel-Posadas,
Ricardo Vera-Graziano
Affiliations
Filiberto Rivera-Torres
Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Alfredo Maciel-Cerda
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Gertrudis Hortensia González-Gómez
Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Alicia Falcón-Neri
Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Karla Gómez-Lizárraga
Cátedra CONAHCyT/Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Héctor Tomás Esquivel-Posadas
Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Ricardo Vera-Graziano
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
Because of the physiological and cardiac changes associated with cardiovascular disease, tissue engineering can potentially restore the biological functions of cardiac tissue through the fabrication of scaffolds. In the present study, hybrid nanofiber scaffolds of poly (vinyl alcohol) (PVA) and bioglass type 58S (58SiO2-33CaO-9P2O5, Bg) were fabricated, and their effect on the spontaneous activity of chick embryonic cardiomyocytes in vitro was determined. PVA/Bg nanofibers were produced by electrospinning and stabilized by chemical crosslinking with glutaraldehyde. The electrospun scaffolds were analyzed to determine their chemical structure, morphology, and thermal transitions. The crosslinked scaffolds were more stable to degradation in water. A Bg concentration of 25% in the hybrid scaffolds improved thermal stability and decreased degradation in water after PVA crosslinking. Cardiomyocytes showed increased adhesion and contractility in cells seeded on hybrid scaffolds with higher Bg concentrations. In addition, the effect of Ca2+ ions released from the bioglass on the contraction patterns of cultured cardiomyocytes was investigated. The results suggest that the scaffolds with 25% Bg led to a uniform beating frequency that resulted in synchronous contraction patterns.