Journal of Space Weather and Space Climate (Jan 2018)
Magnetospheric access for solar protons during the January 2005 SEP event
Abstract
The early phase of the extraordinary solar energetic particle 20 January, 2005 event having the highest peak flux of any SEP in the past 50 years of protons with energies > 100 MeV is studied. Solar energetic particles (>16 MeV) entry to the Earth’s magnetosphere on January 20, 2005 under northward interplanetary magnetic field conditions is considered based on multi-satellite data analysis and magnetic field simulation. Solar wind parameters and interplanetary magnetic field data, as well as calculations in terms of the A2000 magnetospheric magnetic field model were used to specify conditions in the Earth’s environment corresponding to solar proton event. It was shown that during the early phase of the event energetic particle penetration into the magnetosphere took place in the regions on the magnetopause where the magnetospheric and interplanetary magnetic field vectors are parallel. Complex analysis of the experimental data on particle fluxes in the interplanetary medium (data from ACE spacecraft) and on low-altitude (POES) and geosynchronous (GOES) orbits inside the Earth’s magnetosphere show two regions on the magnetopause responsible for particle access to the magnetosphere: the near equatorial day-side region and open field lines window at the high-latitude magnetospheric boundary. Calculations in terms of A2000 magnetospheric magnetic field model and comparison with SuperDARN images support the link between high-latitude solar energetic particle precipitations and the region at the magnetopause where the magnetospheric field is coupled with northward IMF, allowing solar particles entrance into the magnetosphere and access to the northern polar cap.
Keywords