BioMedical Engineering OnLine (Mar 2023)

Motor imagery EEG signal classification with a multivariate time series approach

  • I. Velasco,
  • A. Sipols,
  • C. Simon De Blas,
  • L. Pastor,
  • S. Bayona

DOI
https://doi.org/10.1186/s12938-023-01079-x
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Background Electroencephalogram (EEG) signals record electrical activity on the scalp. Measured signals, especially EEG motor imagery signals, are often inconsistent or distorted, which compromises their classification accuracy. Achieving a reliable classification of motor imagery EEG signals opens the door to possibilities such as the assessment of consciousness, brain computer interfaces or diagnostic tools. We seek a method that works with a reduced number of variables, in order to avoid overfitting and to improve interpretability. This work aims to enhance EEG signal classification accuracy by using methods based on time series analysis. Previous work on this line, usually took a univariate approach, thus losing the possibility to take advantage of the correlation information existing within the time series provided by the different electrodes. To overcome this problem, we propose a multivariate approach that can fully capture the relationships among the different time series included in the EEG data. To perform the multivariate time series analysis, we use a multi-resolution analysis approach based on the discrete wavelet transform, together with a stepwise discriminant that selects the most discriminant variables provided by the discrete wavelet transform analysis Results Applying this methodology to EEG data to differentiate between the motor imagery tasks of moving either hands or feet has yielded very good classification results, achieving in some cases up to 100% of accuracy for this 2-class pre-processed dataset. Besides, the fact that these results were achieved using a reduced number of variables (55 out of 22,176) can shed light on the relevance and impact of those variables. Conclusions This work has a potentially large impact, as it enables classification of EEG data based on multivariate time series analysis in an interpretable way with high accuracy. The method allows a model with a reduced number of features, facilitating its interpretability and improving overfitting. Future work will extend the application of this classification method to help in diagnosis procedures for detecting brain pathologies and for its use in brain computer interfaces. In addition, the results presented here suggest that this method could be applied to other fields for the successful analysis of multivariate temporal data.

Keywords