Remote Sensing (May 2023)

Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data

  • Zhiyong Long,
  • Zichun Jin,
  • Yizhen Meng,
  • Jin Ma

DOI
https://doi.org/10.3390/rs15112769
Journal volume & issue
Vol. 15, no. 11
p. 2769

Abstract

Read online

Aerosol Optical Depth (AOD) is a crucial physical parameter used to measure the radiative and scattering properties of the atmosphere. Obtaining full-coverage AOD measurements is essential for a thorough understanding of its impact on climate and air quality. However, satellite-based AOD products can be affected by abnormal weather conditions and high reflectance surfaces, leading to gaps in spatial coverage. To address this issue, we propose a satellite-based AOD filling method based on hourly level-3 Himawari-8 AOD products. In this study, the optimal model with a mean bias error (MBE) less than 0.01 and a root-mean-square error (RMSE) less than 0.1 in most land cover types was selected to generate the full-coverage AOD. The generated full-coverage AOD was validated against in situ measurements from the AERONET sites and compared with the performance of Himawari-8 AOD and MERRA-2 AOD over the AERONET sites. The validation results indicate that the accuracy of full-coverage AOD is comparable to that of the Advanced Himawari Imager (AHI) AOD, and for other land cover types (excluding barren land), the accuracy of full-coverage AOD is superior to that of MERRA-2 AOD. To investigate the practical application of full-coverage AOD, we utilized it as an input parameter to perform radiative transfer simulations in northwestern and southern China. The validation results showed that the simulated at-sensor radiance based on full-coverage AOD was in good agreement with the at-sensor radiance observations from MODIS. These results indicate that complete and accurate measurements of AOD have considerable potential for application in the simulation of at-sensor radiance and other related topics.

Keywords