Eurasian Chemico-Technological Journal (Jun 2020)

Effect of Different Pore-Forming Additives on the Formation of PVDF Microporous Membranes for Bucky-Gel Actuator

  • O. S. Morozov,
  • S. S. Shachneva,
  • B. A. Bulgakov,
  • A. V. Babkin,
  • A. V. Kepman

DOI
https://doi.org/10.18321/ectj957
Journal volume & issue
Vol. 22, no. 2

Abstract

Read online

The microporous polyvinylidene fluoride (PVDF) membranes were prepared by the solvent evaporation method using 50 wt.% of different pore-forming additives: poly(1-ethyl-3-vinylimidazolium tetrafluoroborate) (PIL-BF4), polyethylene glycol 3000 (PEG-3K) and 40000 (PEG-40K), dibutyl phthalate (DBP). The influence of used additive on morphology, porosity, degree of crystallinity, tensile properties, electrolyte uptake and ionic conductivity of the membranes were investigated. The maximum electrolyte uptake of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) was 184 wt.% for the membrane prepared with PEG-40K, however, the membrane was fragile and unsuitable for practical use. The remaining membranes showed approximately the same porosity (45‒48%) and electrolyte uptakes (169‒175%). At the same time, the membranes significantly differed in mechanical properties and ionic conductivity. The membrane prepared with PIL-BF4, unlike others, has a sponge-like structure and demonstrated high mechanical properties, namely tensile strength is 17.7 MPa and fracture strain is 132.5%. Bucky gel actuators were fabricated using membranes prepared with different additives. The blocking force of the actuators based on membranes with different additives decreased in the sequence of PIL-BF4, DBP and PEG. The actuator based on the membrane prepared with PIL-BF4 demonstrates a blocking force of 5.7 mN and a deformation of 1.35 % at 3 V DC.