Scientific Reports (Mar 2022)

Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6

  • Lars Voss,
  • Marlene Bartos,
  • Claudio Elgueta,
  • Jonas-Frederic Sauer

DOI
https://doi.org/10.1038/s41598-022-09003-4
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract LIM homeobox domain transcription factor 6 (Lhx6) is crucial for the prenatal specification and differentiation of hippocampal GABAergic interneuron precursors. Interestingly, Lhx6 remains to be expressed in parvalbumin-positive hippocampal interneurons (PVIs) long after specification and differentiation have been completed, the functional implications of which remain elusive. We addressed the role of adult-expressed Lhx6 in the hippocampus by knocking down Lhx6 in adult mice (> 8 weeks old) using viral or transgenic expression of Cre-recombinase in Lhx6loxP/loxP mice. Late removal of Lhx6 did not affect the number of PVIs and had no impact on the morphological and physiological properties of PVIs. Furthermore, mice lacking Lhx6 in PVIs displayed normal cognitive behavior. Loss of Lhx6 only partially reduced the expression of Sox6 and Arx, downstream transcription factors that depend on Lhx6 during embryonic development of PVIs. Our data thus suggest that while Lhx6 is vitally important to drive interneuron transcriptional networks during early development, it becomes uncoupled from downstream effectors during postnatal life.