Frontiers in Physiology (Feb 2022)

Local Positioning System-Derived External Load of Female and Male Varsity Ice Hockey Players During Regular Season Games

  • Alexander S. D. Gamble,
  • Alexander S. D. Gamble,
  • Jessica L. Bigg,
  • Danielle L. E. Nyman,
  • Danielle L. E. Nyman,
  • Lawrence L. Spriet

DOI
https://doi.org/10.3389/fphys.2022.831723
Journal volume & issue
Vol. 13

Abstract

Read online

PurposeThe purposes of this study were to quantify the external load for female and male varsity ice hockey players during regular season games using a local positioning system (LPS), compare LPS-derived external load between sexes and positions, and compare skating distances in absolute and relative speed zones.MethodsData were collected for 21 female (7 defense, 14 forwards; 20.0 ± 1.4 yrs., 69.1 ± 6.7 kg, 167.1 ± 5.4 cm) and 25 male (8 defense, 17 forwards; 21.9 ± 1.1 yrs., 85.9 ± 5.4 kg, 181.1 ± 5.2 cm) varsity ice hockey players. Measures included skating distance (total, and in absolute and relative speed zones), peak skating speed, peak acceleration and deceleration, accumulative acceleration load, and number of accelerations, decelerations, turns, skating transitions, direction changes, and impacts.ResultsFemale and male players had a high external load during games, with average peak skating speeds >28 km/h and average skating distances >4.4 km. Most LPS-derived measures showed greater external load in males than females (p < 0.05). Forwards skated further at higher speeds compared to defense in both sexes (p < 0.001). Skating distances were significantly different when comparing absolute and relative speed zones (p < 0.001), with absolute speed zones potentially overestimating skating at very slow, very fast, and sprint speeds and underestimating skating at slow and moderate speeds.ConclusionThis was the first study to measure external load in female ice hockey players with a LPS. Both female and male varsity players had high external loads during games, with forwards having greater external load at higher intensities and defense having greater external load at lower intensities. Sex and positional differences outline the importance of individualized athlete monitoring.

Keywords